|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Назовём "сложностью" данного числа наименьшую длину числовой последовательности (если такая найдётся), которая начинается с нуля и заканчивается этим числом, причём каждый следующий член последовательности либо равен половине предыдущего, либо в сумме с предыдущим составляет 1. Среди всех чисел вида m/250, где m = 1, 3, 5,..., 250 − 1, найти число с наибольшей "сложностью". Докажите что в равногранном тетраэдре основания высот, середины высот и точки пересечения высот граней лежат на одной сфере (сфера 12-ти точек}. |
Страница: << 3 4 5 6 7 8 9 [Всего задач: 44]
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.
Страница: << 3 4 5 6 7 8 9 [Всего задач: 44] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|