ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Вниз   Решение


Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

ВверхВниз   Решение


Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

ВверхВниз   Решение


Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

ВверхВниз   Решение


Автор: Фольклор

Какое наименьшее значение может принимать периметр неравнобедренного треугольника с целыми длинами сторон?

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 56873

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Радиус вписанной окружности треугольника равен 1, а длины его сторон — целые числа. Докажите, что эти числа равны 3, 4, 5.
Прислать комментарий     Решение


Задача 56874

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Приведите пример вписанного четырехугольника с попарно различными целочисленными длинами сторон, у которого длины диагоналей, площадь и радиус описанной окружности — целые числа (Брахмагупта).
Прислать комментарий     Решение


Задача 56875

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.
Прислать комментарий     Решение


Задача 56876

Темы:   [ Целочисленные треугольники ]
[ Рациональные и иррациональные числа ]
Сложность: 6
Классы: 8,9

а) В треугольнике ABC, длины сторон которого рациональные числа, проведена высота BB1. Докажите, что длины отрезков AB1 и CB1 — рациональные числа.
б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре треугольника, длины сторон которых — рациональные числа.
Прислать комментарий     Решение


Задача 116446

Темы:   [ Неравенство треугольника (прочее) ]
[ Целочисленные треугольники ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Какое наименьшее значение может принимать периметр неравнобедренного треугольника с целыми длинами сторон?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .