Версия для печати
Убрать все задачи
На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов —
n. Докажите, что общее число клеточек есть квадрат некоторого числа.
_
_|_|_
_|_|_|_|_
_|_|_|_|_|_|_
|_|_|_|_|_|_|_|
.....................
_ _ _ _ _ _ _ _
|_|_|_|_| ....... |_|_|_|_|
|
| Рис. 1 |

Решение
Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника m×n числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.


Решение
Докажите, что для произвольного треугольника справедливо неравенство
R· P
4
S ,
где
R – радиус окружности, описанной около треугольника,
P и
S – периметр
и площадь треугольника.


Решение
Бесконечная возрастающая арифметическая прогрессия такова, что произведение
каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Решение