ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно. Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав? Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1. Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма. Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла? На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]
В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB, O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что
В треугольнике ABC сторона AB равна стороне BC. Пусть D – основание перпендикуляра, опущенного из B на сторону AC, E – точка пересечения биссектрисы угла A со стороной BC. Через точку E проведён перпендикуляр к AE до пересечения с продолжением стороны AC в точке F (C между F и D). Известно, что AD = m, FC = m/4. Найдите площадь треугольника ABC.
На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.
В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.
Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.). Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 159]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке