ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 598]      



Задача 111234

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Назовем число зеркальным, если справа налево оно читается так же, как слева направо. Например, число 78887 – зеркальное. Найдите все зеркальные пятизначные числа, в записи которых используются только цифры 1 и 0 .
Прислать комментарий     Решение


Задача 116779

Тема:   [ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6

В каком году установлен памятник Юрию Долгорукому, если в записи этого числа последняя цифра на единицу меньше предыдущей и при зачеркивании первой и последней цифры получается наибольшее двузначное число с суммой цифр 14?

Прислать комментарий     Решение

Задача 116858

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 5,6

На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных.

Прислать комментарий     Решение

Задача 60275

Тема:   [ Системы счисления (прочее) ]
Сложность: 2+
Классы: 8,9,10

Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q
Прислать комментарий     Решение

Задача 76503

Тема:   [ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .