Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Диагонали трапеции равны 6 и 8, а средняя линия равна 5. Найдите площадь трапеции.

Вниз   Решение


Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

ВверхВниз   Решение



Плоскость пересекает ребра AB, AC, DC и DB тетраэдра ABCD в точках M, N, P и Q соответственно, причем AM : MB = m, AN : NC = n, DP : PC = p. Найдите отношение BQ/QD.

ВверхВниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC с гипотенузой AB, касается его сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть B1H – высота треугольника A1B1C1. Докажите, что точка H лежит на биссектрисе угла CAB.

ВверхВниз   Решение


Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

ВверхВниз   Решение


Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

ВверхВниз   Решение


Дан отрезок AB и прямая MN, пересекающая его. Построить треугольник ABC так, чтобы прямая MN делила его угол пополам.

ВверхВниз   Решение


Имеется 1959 положительных чисел a1, a2..., a1959, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1.

ВверхВниз   Решение


Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

ВверхВниз   Решение


Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

ВверхВниз   Решение


Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .

ВверхВниз   Решение


Опишите явный вид многочлена  f(x) = f1(x) + f2(x) + ... + fn(x),  где  fi(x) – многочлены из задачи 61050.

ВверхВниз   Решение


Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

ВверхВниз   Решение


Даны два массива x[1]...≤x[k] и  y[1]...≤y[l] и число q. Найти сумму вида x[i] + y[j], наиболее близкую к числу q. (Число действий порядка k+l, дополнительная память — фиксированное число целых переменных, сами массивы менять не разрешается.)

ВверхВниз   Решение


Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

ВверхВниз   Решение


Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  ...,  xn = [1,5xn–1].
Доказать, что последовательность  yn = (–1)xn  непериодическая.

ВверхВниз   Решение


В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/20 всех экскурсий.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 126]      



Задача 116821

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в 1/20 всех экскурсий.

Прислать комментарий     Решение

Задача 116927

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

Прислать комментарий     Решение

Задача 117015

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?

Прислать комментарий     Решение

Задача 105152

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
  1) из покупателей, входящих в лифт на втором этаже, половина едет на первый этаж, а половина – на третий;
  2) среди покупателей, выходящих из лифта, меньше трети делает это на третьем этаже.
На какой этаж покупатели чаще ездили с первого этажа, на второй или на третий?

Прислать комментарий     Решение

Задача 30909

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 6,7

Вокруг экватора натянули верёвку. Затем её удлинили на 1 см и опять натянули, приподняв в одном месте.
Сможет ли человек пройти в образовавшийся зазор?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .