Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике ABC  M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда   GM || AB.

Вниз   Решение


На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1

ВверхВниз   Решение


Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

ВверхВниз   Решение


Хождение за золотом - 1

Однажды царь решил вознаградить одного из своих мудрецов за хорошую работу.
Он привел его в прямоугольную комнату размром NxM, в каждой клетке
которой лежало несколько килограммов золота. Царь разрешил мудрецу
сделать обойти несколько клеток (переходя с клетки, где сейчас
находится мудрец, в одну из четырех с ней соседних), и собрать все
золото, которое попадется на его пути.

Вам дан маршрут мудреца. Требуется определить, сколько килограммов золота
он собрал.

Входные данные
Во входном файле записано план комнаты. Сначала записано количество
строк N, затем - количество столбцов M (1<=N<=20,1<=M<=20).
Затем записано N строк по M чисел в каждой - количество килограммов
золота, которое лежит в данной клетке (число от 0 до 50).
Далее записано число X - сколько клеток обошел мудрец. Далее
записаны координаты этих клеток (координаты клетки - это два числа:
первое определяет номер строки, второе - номер столбца, верхняя
левая клетка на плане имеет координаты (1,1), правая нижняя - (N,M)).
Гарантируется, что мудрец не проходил по одной и той же клетке дважды.

Выходные данные
В выходной файл выведите количество килограммов золота, которое собрал мудрец.

Пример входного файла
3 4
1 2 3 4
5 6 7 8
9 10 11 12
5
1 1
2 1
2 2
2 3
1 3

Пример выходного файла
22

ВверхВниз   Решение


Известно, что  tg A + tg B = 2  и  ctg A + ctg B = 3.  Найдите  tg (A + B).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 210]      



Задача 61228

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2
Классы: 9,10

Докажите формулы:

arcsin(- x) = - arcsin x,    arccos(- x) = $\displaystyle \pi$ - arccos x.


Прислать комментарий     Решение

Задача 77973

Темы:   [ Тригонометрические уравнения ]
[ Геометрические Места Точек ]
Сложность: 2
Классы: 9,10,11

Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0.
Прислать комментарий     Решение


Задача 61229

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2
Классы: 9,10

Чему равна сумма arctg x + arcctg x
Прислать комментарий     Решение


Задача 116874

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 2+
Классы: 10,11

Известно, что  tg A + tg B = 2  и  ctg A + ctg B = 3.  Найдите  tg (A + B).

Прислать комментарий     Решение

Задача 61199

Тема:   [ Тригонометрия (прочее) ]
Сложность: 2+
Классы: 9,10

Вычислите следующие произведения:
а) sin 20osin 40osin 60osin 80o;
б) cos 20ocos 40ocos 60ocos 80o.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .