ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Логика и теория множеств
>>
Теория алгоритмов
>>
Теория игр
>>
Теория игр (прочее)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса? Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 165]
Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?
Первоначально на доске написано число 2004!. Два игрока ходят по очереди. Игрок в свой ход вычитает из написанного числа какое-нибудь натуральное число, которое делится не более чем на 20 различных простых чисел (так, чтобы разность была неотрицательна), записывает на доске эту разность, а старое число стирает. Выигрывает тот, кто получит 0. Кто из играющих – начинающий или его соперник – может гарантировать себе победу, и как ему следует играть?
Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?
Фома и Ерёма делят кучку из 25 монет в 1, 2, 3, ..., 25 алтынов. На каждом ходу один из них выбирает монету из кучки, а другой говорит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас больше алтынов, при равенстве – тот же, кто в прошлый раз. Может ли Фома действовать так, чтобы в итоге обязательно получить больше алтынов, чем Ерёма, или Ерёма всегда сможет Фоме помешать?
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 165] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|