ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что произведение последней цифры числа 2n и суммы всех цифр этого числа, кроме последней, делится на 3.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 499]      



Задача 30624

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Деление с остатком. Арифметика остатков ]
Сложность: 3+
Классы: 8,9

Докажите, что произведение последней цифры числа 2n и суммы всех цифр этого числа, кроме последней, делится на 3.

Прислать комментарий     Решение

Задача 30625

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

Может ли сумма цифр точного квадрата равняться 1970?

Прислать комментарий     Решение

Задача 30626

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

Из трёхзначного числа вычли сумму его цифр. С полученным числом проделали то же самое и так далее, 100 раз. Докажите, что в результате получится нуль.

Прислать комментарий     Решение

Задача 30634

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8

Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого?

Прислать комментарий     Решение

Задача 30636

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Сумма цифр трёхзначного числа равна 7. Докажите, что это число делится на 7 тогда и только тогда, когда две его последние цифры равны.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .