Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Доказать, что уравнение  4k – 4l = 10n  не имеет решений в целых числах.

Вниз   Решение


Сформулируйте теорему, обратную теореме Пифагора. Верна ли она?

ВверхВниз   Решение


В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

ВверхВниз   Решение


Решить в целых числах уравнение  xy = x + y.

ВверхВниз   Решение


Аня, Боря и Вася решили пойти на "Ёлку". Они договорились встретиться на автобусной остановке, но не знают, кто во сколько придёт. Каждый из них может прийти в случайный момент времени с 15.00 до 16.00. Вася самый терпеливый из всех: если он придёт и на остановке не будет ни Ани, ни Бори, то он будет ждать кого-нибудь из них 15 минут, и если никого не дождётся, пойдёт на "Ёлку" один. Боря менее терпеливый: он будет ждать лишь 10 минут. Аня самая нетерпеливая: она вообще не будет ждать. Однако если Боря и Вася встретятся, то они будут ждать Аню до 16.00. Какова вероятность того, что на "Ёлку" они пойдут все вместе?

ВверхВниз   Решение


В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.

ВверхВниз   Решение


На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что $ \overrightarrow{AB_{1}} $ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_{1}} $ = 2$ \overrightarrow{BC}$ и $ \overrightarrow{CA_{1}} $ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.

ВверхВниз   Решение


Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

ВверхВниз   Решение


Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Может ли при этом на доске остаться ровно одна чёрная клетка?

ВверхВниз   Решение


Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1.
Можно ли, проделав это несколько раз, сделать эти числа равными?

ВверхВниз   Решение


На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



Задача 104027

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8,9

В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Прислать комментарий     Решение


Задача 30751

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

Прислать комментарий     Решение

Задача 30753

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 30766

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .