ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]
Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|