ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблице m × n расставлены числа так, что сумма чисел в любой строке или столбце равна 1. Докажите, что m = n. Примечание. Как ни странно, но в некотором смысле это тоже задача на инвариант. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199]
На шести ёлках сидят шесть чижей, на каждой ёлке – по чижу. Ёлки растут в ряд с интервалами в 10 метров. Если какой-то чиж перелетает с одной ёлки на другую, то какой-то другой чиж обязательно перелетает на столько же метров, но в
обратном направлении.
На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Примечание. Как ни странно, но в некотором смысле это тоже задача на инвариант.
На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?
Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|