Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

Вниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Аналитик сделал прогноз изменения курса доллара на каждый из 12 ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за октябрь, на сколько – за ноябрь, ..., на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть, если он предсказывал, что курс увеличится на $x$%, то курс падал на $x$%, и наоборот). При этом через 12 месяцев курс совпал с прогнозом. В какую сторону в итоге изменился курс?

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

ВверхВниз   Решение


Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

ВверхВниз   Решение


На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 30432

Темы:   [ Обход графов ]
[ Четность и нечетность ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 3-
Классы: 6,7

а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

Прислать комментарий     Решение

Задача 31097

Темы:   [ Обход графов ]
[ Четность и нечетность ]
[ Куб ]
[ Остовы многогранных фигур ]
Сложность: 3-
Классы: 6,7,8

а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

Прислать комментарий     Решение

Задача 103745

Темы:   [ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7

Метро города Урюпинска состоит из трёх линий и имеет по крайней мере две конечные станции и по крайней мере два пересадочных узла, причём ни одна из конечных станций не является пересадочной. С каждой линии на любую из остальных можно перейти по крайней мере в двух местах. Нарисуйте пример такой схемы метро, если известно, что это можно сделать, не отрывая карандаша от бумаги и не проводя два раза один и тот же отрезок.

Прислать комментарий     Решение

Задача 30416

Тема:   [ Обход графов ]
Сложность: 3
Классы: 6,7

Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

Прислать комментарий     Решение

Задача 30808

Темы:   [ Обход графов ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .