Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Вниз   Решение


Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3.

ВверхВниз   Решение


Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 591]      



Задача 116374

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Сравните числа  

Прислать комментарий     Решение

Задача 116570

Темы:   [ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 10,11

Даны положительные числа b и c. Докажите неравенство  (bc)2011(b + c)2011(cb)2011 ≥ (b2011c2011)(b2011 + c2011)(c2011b2011).

Прислать комментарий     Решение

Задача 30848

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10

Докажите, что  479 < 2100 + 3100 < 480.

Прислать комментарий     Решение

Задача 30881

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Прислать комментарий     Решение

Задача 30908

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 6,7

Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что  

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 591]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .