Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

Вниз   Решение


Основания трапеции равны a и b, углы при большем основании равны 30o и 45o. Найдите площадь трапеции.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AE, BM и CP. Известно, что EM параллельна AB и EP параллельна AC. Докажите, что MP параллельна BC.

ВверхВниз   Решение


Докажите признак равенства треугольников по углу, биссектрисе этого угла и стороне, прилежащей к этому углу.

ВверхВниз   Решение


Доказать, что произведение шести последовательных натуральных чисел не может быть равно 776965920.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



Задача 30649

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 7,8,9

Найдите все целые решения уравнения  3x – 12y = 7.

Прислать комментарий     Решение

Задача 31281

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Доказать, что число  2 + 4 + 6 + ... + 2n  не может быть  a) квадратом;  б) кубом целого числа.

Прислать комментарий     Решение

Задача 31286

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 6,7,8

Доказать, что произведение шести последовательных натуральных чисел не может быть равно 776965920.

Прислать комментарий     Решение

Задача 31288

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что уравнение  4k – 4l = 10n  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 32782

Тема:   [ Уравнения в целых числах ]
Сложность: 2+
Классы: 7,8,9

У кассира есть только 72-рублевые купюры, а у вас – только 105-рублевые (у обоих в неограниченном количестве).
  а) Сможете ли вы уплатить кассиру один рубль?
  б) А 3 рубля?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .