ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80]      



Задача 31083

Тема:   [ Теория графов (прочее) ]
Сложность: 2
Классы: 6,7,8

В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками.
Сколько человек в классе?

Прислать комментарий     Решение

Задача 32996

Тема:   [ Теория графов (прочее) ]
Сложность: 2
Классы: 8

Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

Прислать комментарий     Решение

Задача 32994

Темы:   [ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8

Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.

Прислать комментарий     Решение

Задача 30815

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Раскраски ]
Сложность: 3
Классы: 7,8

Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Прислать комментарий     Решение

Задача 31363

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).
Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.
б) То же для группы из 100 человек.
в) То же для группы из 102 человек.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .