ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет
вес 1 кг. За один шаг он может загрузить несколько слитков в мешок и продемонстрировать Гиерону, что мешок не порвался (рвать мешок нельзя!). За какое наименьшее число загрузок мешка Архимед может добиться требуемого?

Вниз   Решение


Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум сторонам и высоте, опущенной на третью.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 207]      



Задача 97877

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

Прислать комментарий     Решение

Задача 98580

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

Прислать комментарий     Решение

Задача 115894

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

Прислать комментарий     Решение

Задача 35005

Тема:   [ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.
Прислать комментарий     Решение


Задача 58147

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9,10

а) Нарисуйте многоугольник и точку O внутри его так, чтобы ни одна сторона не была видна из нее полностью.
б) Нарисуйте многоугольник и точку O вне его так, чтобы ни одна сторона не была видна из нее полностью.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .