ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Средняя линия трапеции
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника ABC нашлись такие точки P и Q, что точка P удалена от прямых AB, BC, CA на расстояния 6, 7 и 12 соответственно, а точка Q удалена от прямых AB, BC, CA на расстояния 10, 9 и 4 соответственно. Найдите радиус вписанной окружности треугольника ABC. Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107]
Площадь равнобедренной трапеции, описанной около окружности, равна S. Найдите среднюю линию трапеции, если острый угол при её основании равен .
Один из углов трапеции равен 30o, а прямые, содержащие боковые стороны трапеции, пересекаются под прямым углом. Найдите длину меньшей боковой стороны трапеции, если её средняя линия равна 10, а одно из оснований равно 8.
Внутри треугольника ABC нашлись такие точки P и Q, что точка P удалена от прямых AB, BC, CA на расстояния 6, 7 и 12 соответственно, а точка Q удалена от прямых AB, BC, CA на расстояния 10, 9 и 4 соответственно. Найдите радиус вписанной окружности треугольника ABC.
Одна из сторон вписанного четырёхугольника является диаметром окружности.
Прямая имеет с параллелограммом ABCD единственную общую точку B. Вершины A и C удалены от этой прямой на расстояния, равные a и b.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|