ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 737]      



Задача 35038

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10

Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно).
Как с помощью этих шнуров отмерить 45 секунд? (Поджигать шнур можно с любого из двух концов.)

Прислать комментарий     Решение

Задача 35049

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8,9

Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?

Прислать комментарий     Решение

Задача 35170

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 35198

Темы:   [ Теория алгоритмов (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 7,8,9

Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет?

Прислать комментарий     Решение

Задача 35384

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Вычислительная машина умеет выполнять только одну операцию: a*b=1-a/b. Как выполнить с помощью этой машины все четыре арифметических действия?
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .