ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 737]      



Задача 35584

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

В одной куче 18 конфет, а в другой – 23. Двое играют в игру: одним ходом можно съесть одну кучу конфет, а другую разделить на две кучи. Проигравшим считается тот, кто не может сделать ход, то есть перед ходом которого имеются две кучи из одной конфеты. Кто выиграет при правильной игре?

Прислать комментарий     Решение

Задача 35593

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое наименьшее число выстрелов в игре "Морской бой" на доске 7*7 нужно сделать, чтобы наверняка ранить четырехпалубный корабль (четырехпалубный корабль состоит из четырех клеток, расположенных в один ряд)?
Прислать комментарий     Решение


Задача 35603

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9

Есть три бидона емкостью 14 л, 9 л и 5 л. В большем бидоне 14 литров молока, остальные бидоны пусты. Как с помощью этих сосудов разлить молоко пополам?
Прислать комментарий     Решение


Задача 35613

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9

Неуловимый Джо никогда не проигрывает на рулетке больше четырех раз подряд и никогда не ставит больше 10 долларов. Как ему выиграть 1000 долларов? (В случае выигрыша на рулетке возвращается удвоенная ставка; вначале Джо имеет 100 долларов.)
Прислать комментарий     Решение


Задача 35673

Темы:   [ Игры-шутки ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9,10

Двое играют в двойные шахматы: все фигуры ходят как обычно, но каждый делает по два шахматных хода подряд. Докажите, что первый может как минимум сделать ничью.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .