ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При построении восемь мальчиков разместились так, что 1) А был впереди Б и В; 2) Б - впереди К через одного;
3) Л впереди А, но после Д; 4)В - после Е через одного;
5) Д - между Б и Г; 6) Е - рядом с К, но впереди В.
В каком порядке выстроились мальчики?

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 205]      



Задача 35338

Темы:   [ Математическая логика (прочее) ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10

При построении восемь мальчиков разместились так, что 1) А был впереди Б и В; 2) Б - впереди К через одного;
3) Л впереди А, но после Д; 4)В - после Е через одного;
5) Д - между Б и Г; 6) Е - рядом с К, но впереди В.
В каком порядке выстроились мальчики?
Прислать комментарий     Решение


Задача 66399

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8

Автор: Пешнин А.

На острове рыцарей и лжецов каждый дружит с десятью другими жителями (рыцари всегда говорят правду, лжецы всегда лгут). Каждый житель острова заявил, что среди его друзей больше лжецов, чем рыцарей. Может ли количество рыцарей быть вдвое больше, чем количество лжецов?
Прислать комментарий     Решение


Задача 66401

Темы:   [ Математическая логика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8

Автор: Пешнин А.

В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета?
Прислать комментарий     Решение


Задача 66431

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На острове живут три племени: рыцари, которые всегда говорят правду, лжецы, которые всегда лгут, и хитрецы, которые иногда говорят правду, а иногда лгут. За круглым столом сидят 100 представителей этих племен. Каждый из сидящих за столом произнес две фразы: 1) “Слева от меня сидит лжец”; 2) “Справа от меня сидит хитрец”. Сколько за столом рыцарей и сколько лжецов, если половина присутствующих – хитрецы?
Прислать комментарий     Решение


Задача 66902

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Путешественник прибыл на остров, где живут 50 аборигенов, каждый из которых либо рыцарь, либо лжец. Все аборигены встали в круг, и каждый назвал сначала возраст своего соседа слева, а потом возраст соседа справа. Известно, что каждый рыцарь назвал оба числа верно, а каждый лжец какой-то из возрастов (по своему выбору) увеличил на 1, а другой – уменьшил на 1. Всегда ли путешественник по высказываниям аборигенов сможет определить, кто из них рыцарь, а кто лжец?
Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 205]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .