Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 303]
O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней, OC = 9, CD = 32. Найдите длину хорды.
Расстояния от одного конца диаметра до концов параллельной ему хорды равны 13 и 84. Найдите радиус окружности.
На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Найдите основание треугольника.
Докажите, что если ортоцентр делит высоты треугольника в одном и том же
отношении, то этот треугольник — правильный.
Через вершины
A ,
B и
C трапеции
ABCD (
AD|| BC ) проведена
окружность. Известно, что окружность касается прямой
CD , а её центр
лежит на диагонали
AC . Найдите площадь трапеции
ABCD , если
BC=2
,
AD=8
.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 303]