ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 312]      



Задача 52682

Темы:   [ Вписанные и описанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC с периметром 2p величина острый угол ABC равен $ \alpha$ и AC = a. В треугольник вписана окружность с центром в точке O. Найдите площадь треугольника AOC.

Прислать комментарий     Решение


Задача 53267

Темы:   [ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

Прислать комментарий     Решение


Задача 53508

Темы:   [ Признаки и свойства параллелограмма ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В параллелограмме со сторонами a и b и углом $ \alpha$ проведены биссектрисы четырёх углов. Найдите площадь четырёхугольника, ограниченного этими биссектрисами.

Прислать комментарий     Решение


Задача 55201

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD углы при основании AD удовлетворяют неравенству $ \angle$A < $ \angle$B < 90o. Докажите, что AC > BD.

Прислать комментарий     Решение


Задача 102509

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол C равен 60o, а биссектриса угла C равна 5$ \sqrt{3}$. Длины сторон AC и BC относятся как 5:2 соответственно. Найдите тангенс угла A и сторону BC.

Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .