ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа. Стороны выпуклого пятиугольника ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от A, B, C,
D, E, лежат на одной окружности.
Длины всех сторон прямоугольного треугольника
являются целыми числами, причем наибольший общий делитель
этих чисел равен 1. Докажите, что его катеты равны 2mn
и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.
Даны окружность S и две хорды AB и CD.
Циркулем и линейкой постройте на окружности такую точку X,
чтобы прямые AX и BX высекали на CD отрезок
а) имеющий данную длину a; б) делящийся пополам в данной
точке E хорды CD.
Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что ∠ACB = 50°, а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]
Докажите, что две прямые, параллельные третьей, параллельны между собой.
Докажите, что прямая, пересекающая одну из двух параллельных прямых, пересекает и другую.
Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N.
Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что ∠ACB = 50°, а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.
Докажите, что расстояние от каждой точки одной из двух параллельных прямых до второй прямой одно и то же.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке