Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Даны окружность, прямая и точки A, A', B, B', C, C', M, лежащие на этой прямой. Согласно задачам 30.1 и 30.3 существует единственное проективное преобразование данной прямой на себя, отображающее точки A, B, C соответственно в A', B', C'. Обозначим это преобразование через P. Постройте при помощи одной линейки а) точку P(M); б) неподвижные точки отображения P (задача Штейнера).

Вниз   Решение


Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

ВверхВниз   Решение


Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

ВверхВниз   Решение


а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

ВверхВниз   Решение


Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


ВверхВниз   Решение


Докажите, что угол наклонной с плоскостью есть наименьший из углов, образованных этой наклонной со всевозможными прямыми плоскости.

ВверхВниз   Решение


Доказать, что если  |ax² – bx + c| < 1  при любом x из отрезка  [–1, 1],  то и  |(a + b)x² + c| < 1  на этом отрезке.

ВверхВниз   Решение


На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


Докажите, что расстояние от каждой точки одной из двух параллельных прямых до второй прямой одно и то же.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]      



Задача 53421

Тема:   [ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что две прямые, параллельные третьей, параллельны между собой.

Прислать комментарий     Решение

Задача 53422

Тема:   [ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что прямая, пересекающая одну из двух параллельных прямых, пересекает и другую.

Прислать комментарий     Решение

Задача 53426

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N.
Найдите углы треугольника BMN.

Прислать комментарий     Решение

Задача 53427

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что  ∠ACB = 50°,  а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.

Прислать комментарий     Решение

Задача 53428

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Докажите, что расстояние от каждой точки одной из двух параллельных прямых до второй прямой одно и то же.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .