Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 207]
Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна основанию. Верно ли обратное?
В трапеции ABCD (AD – большее основание) диагональ AC перпендикулярна стороне CD и делит угол BAD пополам. Известно, что ∠CDA = 60°, а периметр трапеции равен 2. Найдите AD.
Равнобедренный треугольник ABC с основанием BC повернули
вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что C2B2 || AC.
|
|
Сложность: 3 Классы: 7,8,9
|
Высота АН треугольника АВС равна его медиане ВМ. На продолжении стороны АВ за точку В отложена точка D так, что BD = AB. Найдите угол BCD.
|
|
Сложность: 3 Классы: 7,8,9
|
На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что EF || AC и AF = AD. Докажите, что AВ = ВЕ.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 207]