ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 207]      



Задача 53429

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём  AM = MD.  Докажите, что  MD || AC.

Прислать комментарий     Решение

Задача 53430

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Равные треугольники. Признаки равенства ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Точки A и D лежат на одной из двух параллельных прямых, точки B и C – на другой, причём прямые AB и CD также параллельны.
Докажите, что  AB = CD  и  AD = BC.

Прислать комментарий     Решение

Задача 64558

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Диагональ BD параллелограмма ABCD образует углы по 45° со стороной BC и высотой, проведённой из вершины D к стороне АВ.
Найдите угол АСD.

Прислать комментарий     Решение

Задача 65213

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 7,8

В четырёхугольнике ABCD биссектрисы АЕ и СF углов A и C параллельны (см. рисунок). Докажите, что углы B и D равны.

Прислать комментарий     Решение

Задача 53424

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи на проценты и отношения ]
Сложность: 2+
Классы: 7,8

Через вершину B треугольника ABC проведена прямая, параллельная прямой AC. Образовавшиеся при этом три угла с вершиной B относятся как  3 : 10 : 5.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .