ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
Сумма сторон AB и BC треугольника ABC равна 11, угол B равен 60°, радиус вписанной окружности равен
Решите уравнение
sin4x + cos4x = a.
Докажите неравенство: 2n > n. Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей. Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй — две, а решившая последней — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?
Даны три попарно перпендикулярные прямые. Четвёртая прямая
образует с данными углы α , β , γ соответственно.
Докажите, что
В множестве, состоящем из n элементов, выбрано 2n–1 подмножеств, каждые три из которых имеют общий элемент. Ребус-система. Расшифруйте числовой ребус — систему Две окружности пересекаются в точках A и B. Точка X
лежит на прямой AB, но не на отрезке AB. Докажите,
что длины всех касательных, проведенных из точки X к окружностям,
равны.
Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? Докажите, что степень точки P относительно
окружности S равна d2 - R2, где R — радиус S, d — расстояние от
точки P до центра S.
Каждая сторона в треугольнике
ABC разделена на 8 равных отрезков. Сколько существует
различных треугольников с вершинами в точках деления (точки A,
B, C не могут быть вершинами треугольников), у которых ни одна
сторона не параллельна ни одной из сторон
треугольника ABC?
Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Медиана треугольника делит пополам его периметр. Докажите, что треугольник равнобедренный.
На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны, BM = BK, AB = 15, BK = 8, CM = 9.
Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников
Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.
На стороне AC треугольника ABC отметили точку E. Известно, что периметр треугольника ABC равен 25 см, периметр треугольника ABE равен 15 см, а периметр треугольника BCE – 17 см. Найдите длину отрезка BE.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке