Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно.

Вниз   Решение


На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём  AN : AD = 1 : 3,  DM : DC = 1 : 4.  Отрезки BM и CN пересекаются в точке O. Найдите отношение  OM : OB.

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 402]      



Задача 53768

Темы:   [ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Точки M и N расположены на сторонах AB и AD параллелограмма ABCD, причём  AM : MB = 1 : 2,  AN : ND = 3 : 2.  Отрезки DM и CN пересекаются в точке K.
Найдите отношения  DK : KM  и  CK : KN.

Прислать комментарий     Решение

Задача 53861

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

Прислать комментарий     Решение

Задача 53886

Темы:   [ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём  AN : AD = 1 : 3,  DM : DC = 1 : 4.  Отрезки BM и CN пересекаются в точке O. Найдите отношение  OM : OB.

Прислать комментарий     Решение

Задача 54117

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.

Прислать комментарий     Решение

Задача 54118

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Докажите, что отрезок, соединяющий середины сторон AB и AC треугольника ABC, и медиана, проведённая из вершины A, делят друг друга пополам.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .