ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
На продолжениях медиан AK, BL и CM треугольника ABC взяты
точки P, Q и R, причём
KP =
Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
Даны две непересекающиеся окружности радиусов R и 2R. К ним
проведены общие касательные, которые пересекаются в точке A
отрезка, соединяющего центры окружностей. Расстояние между
центрами окружностей равно
2R
Докажите, что число состоящее из 243 единиц делится на 243.
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Диагонали выпуклого четырёхугольника равны c и d и пересекаются под углом 45o. Найдите отрезки, соединяющие середины противоположных сторон четырёхугольника.
Найдите наибольшее значение функции y = ln (x+4)5-5x на отрезке [-3,5;0] . Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 604]
Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB: а) вдвое меньше AB; б) вдвое меньше OA.
Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.
Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°.
Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если ∠ABO = 40°.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке