ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание H высоты CH прямоугольного треугольника ABC соединили с серединами M и N катетов AC и BC.
Докажите, что периметр четырёхугольника CMHN равен сумме катетов треугольника ABC.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180]      



Задача 115964

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3-
Классы: 7,8,9

Автор: Фольклор

Медиана треугольника в полтора раза больше стороны, к которой она проведена. Найдите угол между двумя другими медианами.

Прислать комментарий     Решение

Задача 53519

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Медиана, проведённая к гипотенузе прямоугольного треугольника, равна m и делит прямой угол в отношении  1 : 2.  Найдите стороны треугольника.

Прислать комментарий     Решение

Задача 53640

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы.

Прислать комментарий     Решение

Задача 54042

Тема:   [ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Основание H высоты CH прямоугольного треугольника ABC соединили с серединами M и N катетов AC и BC.
Докажите, что периметр четырёхугольника CMHN равен сумме катетов треугольника ABC.

Прислать комментарий     Решение

Задача 54230

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 30°. Найдите расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник делится медианой, проведённой из вершины прямого угла.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .