Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Ира, Наташа, Алеша и Витя собирали грибы. Наташа собрала больше всех, Ира не меньше всех, а Алеша – больше, чем Витя.
Верно ли, что девочки собрали грибов больше, чем мальчики?

Вниз   Решение


Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

ВверхВниз   Решение


В правильной пирамиде SMNPQ ( S – вершина) точки H и F – середины рёбер MN и NP соответственно, точка E лежит на отрезке SH , причём SH = 3 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки C и D лежат на прямой EF , а прямая AB касается сферы в одной из точек отрезка AB . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через точку D и середины рёбер A1D1 и C1D1 . Найдите расстояние от середины ребра AA1 до плоскости P , если ребро куба равно 2.

ВверхВниз   Решение


Две высоты треугольника равны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.

ВверхВниз   Решение


Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
  а)  N = 2;
  б)  N – любое натуральное число, большее 1.

ВверхВниз   Решение


Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3.

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 293]      



Задача 54164

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3+
Классы: 8,9

Диагональ равнобедренной трапеции равна 10 и образует угол, равный 60o, с основанием трапеции. Найдите среднюю линию трапеции.

Прислать комментарий     Решение


Задача 54214

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.

Прислать комментарий     Решение


Задача 54287

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 54336

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Окружность с центром в точке пересечения диагоналей KM и LN равнобедренной трапеции KLMN касается меньшего основания LM и боковой стороны MN. Найдите периметр трапеции KLMN, если известно, что её высота равна 36, а радиус окружности равен 11.

Прислать комментарий     Решение

Задача 54337

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 293]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .