ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с тупым углом A, равным $ \alpha$, проведены высоты BN и CM. Найдите отношение площади четырёхугольника BMNC к площади треугольника ABC.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1354]      



Задача 54470

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношения площадей ]
Сложность: 3+
Классы: 8,9

В прямоугольный равнобедренный треугольник ABC с прямым углом при вершине B вписан прямоугольник MNKB так, что две его стороны MB и KB лежат на катетах, а вершина N — на гипотенузе AC. В каком отношении точка N должна делить гипотенузу, чтобы площадь параллелограмма составляла 18% площади треугольника?

Прислать комментарий     Решение


Задача 54484

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что обратная величина квадрата высоты прямоугольного треугольника, проведённой к гипотенузе, равна сумме обратных величин квадратов катетов.

Прислать комментарий     Решение


Задача 54491

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.

Прислать комментарий     Решение


Задача 54501

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC с тупым углом A, равным $ \alpha$, проведены высоты BN и CM. Найдите отношение площади четырёхугольника BMNC к площади треугольника ABC.

Прислать комментарий     Решение


Задача 54554

Темы:   [ Медиана, проведенная к гипотенузе ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
По какой траектории движется середина этого отрезка?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .