Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Найдите эти отрезки, если третья сторона треугольника равна 28.

Вниз   Решение


Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 152]      



Задача 54657

Темы:   [ Признаки подобия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2
Классы: 8,9

Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Прислать комментарий     Решение

Задача 53736

Темы:   [ Признаки подобия ]
[ Подобные треугольники ]
Сложность: 2+
Классы: 8,9

Боковая сторона треугольника разделена на пять равных частей; через точки деления проведены прямые, параллельные основанию.
Найдите отрезки этих прямых, заключённые между боковыми сторонами, если основание равно 20.

Прислать комментарий     Решение

Задача 53737

Тема:   [ Признаки подобия ]
Сложность: 2+
Классы: 8,9

Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Найдите эти отрезки, если третья сторона треугольника равна 28.

Прислать комментарий     Решение

Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 52397

Темы:   [ Признаки подобия ]
[ Отношение площадей подобных треугольников ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая стороны AB и AC в точках M и N.
Найдите площадь треугольника AMN, если площадь треугольника ABC равна S, а угол A равен α.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .