ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 9702]      



Задача 116990

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

Прислать комментарий     Решение

Задача 53972

Тема:   [ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Точка A лежит вне данной окружности с центром O. Окружность с диаметром OA пересекается с данной в точках B и C. Докажите, что прямые AB и AC — касательные к данной окружности.

Прислать комментарий     Решение


Задача 54420

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.

Прислать комментарий     Решение


Задача 54536

Тема:   [ Построение треугольников по различным элементам ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по стороне, высоте и медиане, проведённым из конца этой стороны.

Прислать комментарий     Решение


Задача 54964

Тема:   [ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.

Прислать комментарий     Решение


Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .