ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184]      



Задача 35011

Тема:   [ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 2+
Классы: 9

Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

Прислать комментарий     Решение

Задача 55216

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Неравенства с площадями ]
Сложность: 3
Классы: 8,9

Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.

Прислать комментарий     Решение


Задача 102206

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника.
Прислать комментарий     Решение


Задача 102208

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Площадь треугольника ABC равна 20. Угол между сторонами AB и AC острый. Найдите сторону BC, если AB = 8, AC = 13.
Прислать комментарий     Решение


Задача 55205

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит  .

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .