ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 54985

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Площадь треугольника MNP равна 7. Через точку Q на стороне MN проведена прямая, параллельная стороне MP и пересекающая сторону NP в точке R. На отрезке QR взяты точки A и B. Найдите площадь треугольника NAR, если известно, что  QR : MP = QA : QB = 1 : 5  и прямая NB проходит через точку пересечения прямых MR и QP.

Прислать комментарий     Решение

Задача 54986

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена прямая DE, параллельная AC (D и E – точки пересечения со сторонами AB и BC соответственно). Прямая, проходящая через вершину B и точку пересечения диагоналей трапеции ADEC, пересекает сторону AC в точке P. На отрезке BD взята точка Q. Найдите SQBP, если  SDBE = 8  и  QB : AQ = DE : AC = 1 : 7.

Прислать комментарий     Решение

Задача 56460

Темы:   [ Замечательное свойство трапеции ]
[ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.

Прислать комментарий     Решение

Задача 66265

Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9,10

Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

Прислать комментарий     Решение

Задача 53749

 [Замечательное свойство трапеции]
Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .