ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

О том, как прыгают кузнечики. Предположим, что имеется лента, разбитая на клетки и уходящая вправо до бесконечности. На первой клетке этой ленты сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо на одну, либо на две клетки вправо. Сколькими способами кузнечик может добраться до n-ой от начала ленты клетки?

Вниз   Решение


Решите в целых числах уравнение:  x³ + x² + x – 3 = 0.

ВверхВниз   Решение


Можно ли расставить знаки «+» или «–» между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

ВверхВниз   Решение


Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 57005

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что выпуклый четырехугольник ABCD можно вписать в окружность тогда и только тогда, когда  $ \angle$ABC + $ \angle$CDA = 180o.
Прислать комментарий     Решение


Задача 57006

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.
Прислать комментарий     Решение


Задача 57007

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке.

б) Докажите, что правильный 2n-угольник имеет центр симметрии.
Прислать комментарий     Решение


Задача 57008

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 7,8,9

а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
Прислать комментарий     Решение


Задача 116530

Темы:   [ Многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Можно ли начертить два треугольника так, чтобы образовался девятиугольник?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .