|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи О том, как прыгают кузнечики. Предположим, что имеется лента, разбитая на клетки и уходящая вправо до бесконечности. На первой клетке этой ленты сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо на одну, либо на две клетки вправо. Сколькими способами кузнечик может добраться до n-ой от начала ленты клетки? Решите в целых числах уравнение: x³ + x² + x – 3 = 0. Можно ли расставить знаки «+» или «–» между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю? Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда AB + CD = BC + AD. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
б) Докажите, что правильный 2n-угольник имеет центр симметрии.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
Можно ли начертить два треугольника так, чтобы образовался девятиугольник?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|