Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]
Таня вырезала из бумаги выпуклый многоугольник и несколько раз его согнула так, что получился двухслойный четырёхугольник.
Мог ли вырезанный многоугольник быть семиугольником?
В выпуклом семиугольнике A1A2A3A4A5A6A7 диагонали A1A3, A2A4, A3A5, A4A6, A5A7, A6A1 и A7A2 равны между собой. Диагонали A1A4, A2A5, A3A6, A4A7, A5A1, A6A2 и A7A3 тоже равны между собой.
Обязательно ли этот семиугольник равносторонний?
|
|
Сложность: 4- Классы: 10,11
|
Можно ли разрезать плоскость на многоугольники, каждый из которых переходит
в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?
Внутри равностороннего (не обязательно правильного) семиугольника
A1A2...
A7 взята произвольно точка
O. Обозначим через
H1,
H2,...,
H7 основания перпендикуляров, опущенных из точки
O на
стороны
A1A2,
A2A3,...,
A7A1 соответственно. Известно, что точки
H1,
H2,...,
H7 лежат на самих сторонах, а не на их продолжениях.
Доказать, что
A1H1 +
A2H2 + ... +
A7H7 =
H1A2 +
H2A3 + ... +
H7A1.
Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в
некоторой точке булавкой. При повороте одного из многоугольников около этой
"оси" на
25
o30
он снова совместился со вторым
многоугольником. Каково наименьшее возможное число сторон таких многоугольников?
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]