Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку?

Вниз   Решение


Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

ВверхВниз   Решение


На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.

ВверхВниз   Решение


Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?

ВверхВниз   Решение


Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

ВверхВниз   Решение


В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

ВверхВниз   Решение


Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 9759]      



Задача 57299

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABC $ \leq$ AB . BC/2.
Прислать комментарий     Решение


Задача 57300

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.
Прислать комментарий     Решение


Задача 57301

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.
Прислать комментарий     Решение


Задача 57302

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.
Прислать комментарий     Решение


Задача 57807

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что при параллельном переносе окружность переходит в окружность.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 9759]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .