Версия для печати
Убрать все задачи
Основанием пирамиды
SABC является прямоугольный треугольник
ABC (
C – вершина прямого угла), причём
BC = 4
,
OB =
,
а
SO – высота пирамиды. Найдите боковую поверхность пирамиды
SABC , если
все её боковые грани одинаково наклонены к основанию и
угол их наклона равен
arcsin
.

Решение
Две окружности радиуса
R пересекаются в точках
M и
N.
Пусть
A и
B — точки пересечения серединного перпендикуляра
к отрезку
MN с этими окружностями, лежащие по одну
сторону от прямой
MN. Докажите, что
MN2 +
AB2 = 4
R2.

Решение