ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0, m), (n, 0), (n, m), где n и m — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 222]      



Задача 58077

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0, m), (n, 0), (n, m), где n и m — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.
Прислать комментарий     Решение


Задача 78019

Темы:   [ Принцип крайнего (прочее) ]
[ Обратный ход ]
[ Последовательности ]
Сложность: 4
Классы: 8,9,10

Если дан ряд из 15 чисел

a1, a2,..., a15, (1)

то можно написать второй ряд

b1, b2,..., b15, (2)

где bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai. Существует ли ряд чисел ai, если дан ряд чисел bi:

1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

Прислать комментарий     Решение

Задача 78087

Темы:   [ Принцип крайнего (прочее) ]
[ Рекуррентные соотношения ]
Сложность: 4
Классы: 10,11

Взяли три числа x, y, z. Вычислили абсолютные величины попарных разностей x1 = |x - y|, y1 = |y - z|, z1 = |z - x|. Тем же способом по числам x1, y1, z1 построили числа x2, y2, z2 и т.д. Оказалось, что при некотором n xn = x, yn = y, zn = z. Зная, что x = 1, найти y и z.
Прислать комментарий     Решение


Задача 78231

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 10,11

Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку.
Прислать комментарий     Решение


Задача 78265

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .