ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны окружность, прямая и точки A, A', B, B', C, C', M,
лежащие на этой прямой. Согласно задачам 30.1
и 30.3 существует единственное проективное преобразование
данной прямой на себя, отображающее точки A, B, C соответственно
в A', B', C'. Обозначим это преобразование через P.
Постройте при помощи одной линейки а) точку P(M);
б) неподвижные точки отображения P (задача Штейнера).
Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P. Докажите, что проективное преобразование прямой
однозначно определяется образами трех произвольных точек.
а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем? б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки? в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?
Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
|
Страница: 1 2 >> [Всего задач: 7]
Даны четыре окружности, причем окружности S1
и S3 пересекаются с обеими окружностями S2 и S4. Докажите,
что если точки пересечения S1 с S2 и S3 с S4 лежат на одной
окружности или прямой, то и точки пересечения S1 с S4 и S2
с S3 лежат на одной окружности или прямой (рис.).
Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Стороны выпуклого пятиугольника ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от A, B, C,
D, E, лежат на одной окружности.
На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3.
Докажите, что если описанные окружности треугольников
A1A2B3,
A1B2A3 и B1A2A3 проходят через одну точку, то и описанные
окружности треугольников B1B2A3, B1A2B3 и A1B2B3
пересекаются в одной точке.
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке