Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 193]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На карусели с n сиденьями мальчик катался n сеансов подряд. После каждого сеанса он вставал и, двигаясь по часовой стрелке, пересаживался на другое сиденье. Число сидений карусели, мимо которых мальчик проходит при пересаживании, включая и то, на которое он садится, назовём длиной перехода. При каких n за n сеансов мальчик мог побывать на каждом сиденье, если длины всех n – 1 переходов различны и меньше n?
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
Натуральные числа от 1 до n расставляются в ряд в произвольном
порядке. Расстановка называется плохой, если в
ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих
в
порядке убывания. Остальные расстановки называются хорошими.
Докажите,
что количество хороших расстановок не превосходит 81
n.
|
|
Сложность: 5 Классы: 8,9,10,11
|
В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-
удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 193]