ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

Вниз   Решение


Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

ВверхВниз   Решение


Анаграммой называется произвольное слово, полученное из данного слова перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка";   б) "прямая";   в) "перешеек";   г) "биссектриса";   д) "абракадабра";   е) "комбинаторика"?

Вверх   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 171]      



Задача 60394

 [Анаграммы]
Темы:   [ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Анаграммой называется произвольное слово, полученное из данного слова перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка";   б) "прямая";   в) "перешеек";   г) "биссектриса";   д) "абракадабра";   е) "комбинаторика"?

Прислать комментарий     Решение

Задача 98031

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

Прислать комментарий     Решение

Задача 30702

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

Прислать комментарий     Решение

Задача 30728

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Сколькими способами три человека могут разделить между собой шесть одинаковых яблок, один апельсин, одну сливу и один мандарин?

Прислать комментарий     Решение

Задача 30729

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .