Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

По кругу написано 100 ненулевых чисел. Между каждыми двумя соседними числами написали их произведение, а прежние числа стерли. Количество положительных чисел не изменилось. Какое минимальное количество положительных чисел могло быть написано изначально?

Вниз   Решение


Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

ВверхВниз   Решение


На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

ВверхВниз   Решение


а) Докажите, что производящая функция последовательности чисел Фибоначчи   F(x) = F0 + F1x + F2x² + ... + Fnxn + ...

может быть записана в виде     где   = = .

б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.

ВверхВниз   Решение


В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.

ВверхВниз   Решение


Малыш и Карлсон вместе съели банку варенья. При этом Карлсон съел на 40% меньше ложек варенья, чем Малыш, но зато в его ложке помещалось на 150% варенья больше, чем в ложке Малыша. Какую часть банки варенья съел Карлсон?

ВверхВниз   Решение


Найдите наименьшее натуральное n, для которого существует такое m, что  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 78066

Темы:   [ Десятичные дроби (прочее) ]
[ Приближения чисел ]
Сложность: 4-
Классы: 9,10

В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Прислать комментарий     Решение

Задача 60611

 [Персидский календарь]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 9,10,11

Наиболее точный календарь ввёл в Персии в 1079 году персидский астроном, математик и поэт Омар Альхайями. Восстановите этот календарный стиль, рассмотрев третью подходящую дробь  [365; 4, 7, 1]  к длительности астрономического года. За сколько лет в этом календаре накапливается ошибка в одни сутки?

Прислать комментарий     Решение

Задача 60614

 [Формат A4]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60615

 [Числа из электрической розетки]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60619

 [Теорема Лежандра]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Докажите, что если     то p/q – подходящая дробь к числу α.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .