ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа. |
Страница: 1 2 3 >> [Всего задач: 15]
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Длины сторон треугольника — последовательные
целые числа. Найдите эти числа, если известно, что одна из
медиан перпендикулярна одной из биссектрис.
Пусть в прямоугольном треугольнике длины сторон выражаются целыми числами. Докажите, что
Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.
Длины всех сторон прямоугольного треугольника
являются целыми числами, причем наибольший общий делитель
этих чисел равен 1. Докажите, что его катеты равны 2mn
и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.
Страница: 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке