Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.

Вниз   Решение


Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.

ВверхВниз   Решение


Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.

ВверхВниз   Решение


В угол величины 2$ \alpha$ вписаны две касающиеся окружности. Найдите отношение радиуса меньшей окружности к радиусу третьей окружности, касающейся первых двух и одной из сторон угла.

ВверхВниз   Решение


Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

ВверхВниз   Решение


Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

Вверх   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 598]      



Задача 60341

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8

Сколько существует шестизначных чисел, делящихся на 5?

Прислать комментарий     Решение

Задача 60402

Темы:   [ Сочетания и размещения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Сколько существует шестизначных чисел, у которых каждая последующая цифра меньше предыдущей?

Прислать комментарий     Решение

Задача 60408

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 9,10

Почему равенства  11² = 121  и  11³ = 1331  похожи на строчки треугольника Паскаля? Чему равно 114?

Прислать комментарий     Решение

Задача 60650

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

Прислать комментарий     Решение

Задача 60894

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Троичная система счисления ]
[ Взвешивания ]
Сложность: 2+
Классы: 6,7,8

Имеются весы с двумя чашами и по одной гире в 1 г, 3 г, 9 г, 27 г и 81 г. Как уравновесить груз в 61 г, положенный на чашу весов?

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .