ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 60831

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

Прислать комментарий     Решение

Задача 60974

 [Китайская теорема об остатках для многочленов]
Темы:   [ Китайская теорема об остатках ]
[ Многочлены (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

Прислать комментарий     Решение

Задача 111875

Темы:   [ Китайская теорема об остатках ]
[ Произведения и факториалы ]
[ Простые числа и их свойства ]
Сложность: 4+
Классы: 9,10,11

При каких натуральных  n > 1  существуют такие натуральные b1, ..., bn  (не все из которых равны), что при всех натуральных k число
(b1 + k)(b2 + k)...(bn + k)  является степенью натурального числа? (Показатель степени может зависеть от k, но должен быть больше 1.)

Прислать комментарий     Решение

Задача 31261

Темы:   [ Арифметика остатков (прочее) ]
[ Китайская теорема об остатках ]
Сложность: 3
Классы: 6,7,8

a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

Прислать комментарий     Решение

Задача 60823

Темы:   [ Теорема Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .