ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В этой задаче вы должны построить предложение русского языка, которое говорит о себе правду, только правду, и ничего кроме правды. Это предложение должно содержать в себе информацию о количестве букв, слов, пробелов, запятых, точек, кавычек в предложении и о количестве вхождений в предложение всех его слов. Оно должно быть орфографически и пунктуационно правильным, а также корректным с точки зрения русского языка. Все числительные должны быть записаны словами. Моделью такого предложения (не удовлетворяющей лишь свойству
правдивости) может служить такой текст:
Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?
Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH. На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3? Из двух квадратов один. Имеются два квадрата 3×3 и 1×1. Разрезать эти квадраты прямыми на части (не более трех), из которых можно было бы сложить один квадрат. Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости. Две равные окружности пересекаются в точках A и B . P – отличная от A и B точка одной из окружностей, X , Y – вторые точки пересечения прямых PA , PB с другой окружностью. Докажите, что прямая, проходящая через P и перпендикулярная AB , делит одну из дуг XY пополам. На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный. Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры. Докажите иррациональность следующих чисел: а) б) в) г) д) cos 10° ; е) tg 10° ; ж) sin 1° ; з) log23 . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]
В числе a = 0,12457... n-я цифра после запятой равна цифре слева от запятой в числе
Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
Ненулевые числа a и b удовлетворяют равенству a²b²(a²b² + 4) = 2(a6 + b6). Докажите, что хотя бы одно из них иррационально.
Действительные числа x и y таковы, что для любых различных простых нечётных p и q число xp + yq рационально.
Докажите иррациональность следующих чисел: а) б) в) г) д) cos 10° ; е) tg 10° ; ж) sin 1° ; з) log23 .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 95]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке